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Abstract
In this paper the effects of dislocations on the positron channeling in a periodically bent crystal
are studied. We begin with the unified treatment of the longitudinal and transverse motion of the
particle. We then separate out the Schrödinger equation into longitudinal and transverse
motions. The variation in effective potential and frequency in the different regions of
dislocation affected channels is found. The wavefunctions of positrons channeled in the perfect
and the dislocation affected channels are found and the channeling and dechanneling
probabilities are calculated. The angular and spectral distributions of radiation intensity are
calculated and compared with those of normal channeling. The calculations are carried out with
varying values of dislocation density and varying undulator wavelength.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ever since its discovery about 30 years back, channeling
radiation has been investigated extensively both theoretically
and experimentally [1–12]. The radiation was observed
for the first time for positrons and later on for electrons.
Emission of channeling radiation by these particles is of great
importance in accelerator based research in general and atomic
and condensed matter physics in particular. Initially, the
observation of this radiation seemed difficult because of its
low radiation frequency and the presence of other incoherent
radiations like bremsstrahlung. The important breakthrough
came with the realization that the relativistic effects shift the
emitted photon energy range to keV or MeV from MeV or GeV
channeled positrons and electrons respectively.

One of the main applications of ion channeling is in
defect studies. Real crystals are never perfect and particles
propagating through them can ‘see’ their presence through the
effects these defects will produce in the solids. The study
on the effects of defects on charged particle propagation has
been an area of research for a long time. Some experiments
have been done to explore their applications [5]. The most
important example of defects that produces distortion in the

3 Author to whom any correspondence should be addressed.

channel is dislocations. This distortion, leading to curvature
in the channels, alters the particle trajectory and can lead to
dechanneling for large distortions [6]. The effects of these
dislocations on channeling radiation have been studied both
theoretically and experimentally [2] and one finds an increase
in channeling radiation frequency and decrease of intensity
with increase of the distortions induced by these dislocations.

Channeling in a periodically bent crystal is of recent
interest in connection with the undulator problem. A
crystalline undulator is basically a periodically bent channel
with ultrarelativistic charged particles undergoing channeling
through it. In a crystalline undulator, in addition to the
channeling radiation, there occurs undulator radiation, which
is due to the periodic bending of the crystallographic planes. It
serves as an efficient source for coherent high energy photon
emission [13–21]. The parameters of the undulator can be
tuned by varying the energy and type of projectile and by
choosing different crystallographic channels. Also a wide
range of frequencies and bending amplitudes in crystals allows
one to generate crystalline undulator radiation with energies
from the eV to the MeV region. Several groups have studied
this theoretically [16–21] and a few others have applied this for
making undulators [22–30].

The necessary conditions to be satisfied by a crystalline
undulator to become a source of radiation are discussed by
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various authors [16, 31]. These are given by

C = 4π2εa/U ′
maxλ

2
u < 1 stable channeling

d � a � λu large amplitude regime

N = L/λ � 1 large number of undulator periods

L < min[Ld(C), La(ω)] account for channeling

and photon attenuation

�ε/ε � 1 low radiative losses

(1)

where a is the amplitude of bending of the channel, ε = γ mc2

the energy of the particle, λu is the wavelength of the undulator,
L the undulator length, Ld the dechanneling length, La the
attenuation length and d the interplanar spacing.

Stable channeling of a projectile in a periodically bent
crystal occurs if the maximum centrifugal force Fcf =
γ mc2/Rmin (Rmin being the minimum curvature of radius of
the bent channel) is less than the maximal restoring force due to
the interplanar field Fint; i.e., C = Fcf/Fint < 1. A crystalline
undulator should be considered in the high amplitude regime.
In the limit a/d > 1, the undulator and channeling radiation
frequencies are well separated. The term ‘undulator’ implies
the number of periods to be large so that the emitted radiation
spectrum is narrow with well separated peaks.

The fourth condition in equations (1) puts a severe
limitation on the allowed values of crystalline undulator
length L due to dechanneling and attenuation, represented by
dechanneling length Ld and attenuation length La respectively.
A particle entering the channel undergoes scattering by
electrons and nuclei of the crystal. The dechanneling effect
stands for a gradual increase in the transverse energy of a
channeled particle due to these inelastic collisions. At the
distance Ld, from the entrance point, the particle gains a
transverse energy higher than the planar potential barrier and
leaves the channel. La is defined as the scale at which the
intensity of the photon flux is decreased by a factor e due to the
process of absorption and scattering. Commenting on the last
condition in equations (1), the coherence of undulator radiation
is only possible when the energy loss �ε of the particle during
its passage through the undulator is small.

Various methods have been proposed to realize such a
crystalline undulator. It can be done either by using ultrasonic
waves [17] or by gradient crystals [22–24] or by using
substrates with periodically deposited strips of alternating
stresses [25]. This last method has been tried recently
in the works of Guidi et al and Lanzoni et al [27–29].
Methods like making regularly spaced grooves on crystal
surfaces [26, 27, 30] and using crystals with periodic surface
deformations [30] have also been proposed to achieve periodic
bending in a crystal. However, an actual crystalline undulator
has still not been completely realized. On the other hand,
all the theoretical models for crystalline undulators vis-a-vis
channeling radiation have ignored the presence of defects and
damage, which is invariably present in the materials. As
mentioned above, the dislocations are the most important
defects, having long range effects on channeling phenomena
because of the distortions they produce. These distortions are
also likely to have very significant effects on the analysis of

Figure 1. The model for the channel affected by dislocation. Instead
of the straight channels as in the figure, for the present study the
whole region is considered as periodically bent.

the channeling in periodically bent crystals. We have reported
in one of our recent works [32] the effects of dislocations
on channeling. The shifting of potential minima and the
variation of channeling/dechanneling probabilities with the
radius of curvature of the dislocation affected regions are proof
of the fact that effects of defects cannot be neglected in the
channeling studies. In the present analysis, we investigate
the effects of dislocations on a particle propagating in a
periodically bent crystal.

A periodically bent channel with a reasonable amplitude
of bending a (a � d) is considered. Both the
dislocation affected region and the periodically bent channel
are represented by their radii of curvature and wavelengths
(represented by λd and λu respectively) and we consider the
modulation of these effects of dislocations over the periodicity
of the channel. Two cases of high and low dislocation densities
are considered. The varying dislocation densities change these
modulation effects. We divide the channel into four regions:
beginning and ending with perfect periodically bent regions
with two dislocation affected regions between them as shown
in figure 1.

2. Effects of dislocations on channeling in a
periodically bent crystal

Let us consider a crystal whose planes are periodically bent
following a perfect harmonic shape x(z) = a sin(kuz). The
transverse and longitudinal coordinates of a channeled particle
in such a periodically bent crystal can be written as [20]

x̃ = x − a sin(kuz) (2)

where

ku = 2π

λu
. (3)

We consider now the effects of dislocation on such a
typical channel situated at some finite distance from the
dislocation core, outside the dechanneling cylinder [7]. The
dislocation induced distortions in the crystallographic channels
are divided into two regions [32], namely regions II and III,
which smoothly join the perfect region I and region IV, as
shown in figure 1. The centrifugal forces act in opposite
directions in regions II and III. Here ρ0 corresponds to the
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Table 1. Parameters of a dislocation affected region for channeling
in the 〈110〉 direction for Si.

Dislocation
density (cm−2) r0 (nm) Rd (nm) λd (nm)

1010 0.5 × 102 10.28 × 105 6.28 × 102

109 1.58 × 102 10.266 × 106 9.92 × 102

108 0.5 × 103 10.28 × 107 6.28 × 103

radial coordinate of the channel center as measured from the
origin and ϕ0 is the corresponding angular coordinate.

Consider the first region, which is part of the normal
periodically bent channel. The Schrödinger equation can be
written as

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂z2

)
� I(x, z) + U(x)� I(x, z)

= E I� I(x, z) (4)

where E I is the total energy and the transverse potential U(x)

is given by

U(x) = V0x̃2

= V0(x − a sin(kuz))2. (5)

Now consider the dislocation affected regions of the
channel. Centrifugal force proportional to μ2/ρ2 becomes
operative in the curved regions of the channel. Here μh̄ is the
angular momentum with μ2 = l(l + 1) with l as the orbital
angular momentum quantum number and ρ is the radius of
curvature of the channel. For the two regions of dislocation
affected channel these forces are acting in directions opposite
to each other. Schrödinger equations for both these regions are
written in terms of the polar coordinates ρ and ϕ.

2.1. Low dislocation density (λd > λu)

Now assume that a finite number of undulator periods are there
in one length of the dislocation affected region of the channel.
Let xd be the amplitude of the wave corresponding to the
dislocation affected region with a wavelength λd and a phase
difference of φ between the dislocation affected channel and
the undulator wave. Now we can write

λd = nλu (6)

ku = nkd. (7)

Both these waves can be written in the form

r1 = a sin(nkdz) (8)

r2 = xd sin(kdz + φ). (9)

Superposition of the waves gives

r = r1 + r2 = A sin(kdz + ) (10)

where A and  are the effective amplitude and phase of the
final wave and are given by

A2 = a2 + x2
d + 2axd cos[(n − 1)kdz − φ] (11)

Figure 2. The change in amplitude of oscillations with respect to the
depth of the crystal. The amplitude is no longer constant but varies
periodically with respect to the depth.

Table 2. The relation between a periodically bent channel and the
dislocation affected region for channeling in a periodically bent
region at a dislocation density of 108 cm−2.

a (nm) λu (×103 nm) Ru (nm) E (MeV) xd (nm)

1 3.14 2.5 × 105 142.363 2.198 × 104

10 3.14 2.5 × 104 14.236 2.198 × 103

100 3.14 2.5 × 103 1.412 2.198 × 102

tan  = a sin[(n − 1)kdz] + xd sin φ

a cos[(n − 1)kdz] + xd cos φ
. (12)

Consider region II, i.e. the first curved part of the
dislocation affected channel. The Schrödinger equation for this
region in terms of the polar coordinates ρ and ϕ is given by

− h̄2

2m

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2

]
� II(ρ, ϕ)

+ U(ρ)� II(ρ, ϕ) = E II� II(ρ, ϕ). (13)

With the channel periodically bent ρ0 can now be written as

ρ̃0 = ρ0 − xd sin(kdz) + A sin(kuz). (14)

The variation of both the amplitude of bending and the
radius of curvature of the dislocation affected region depends
on both the waves: the dislocation affected region and the
undulator represented by λd and λu. The following tables show
how these parameters depend on each others’ values. Table 1
gives the variation of the parameters of the dislocation affected
region: radius and length of the curved region, Rd = ρ0 and
λd = 2z respectively, with dislocation density. We have [6]

Rd = 2π2r 2
0

b cos3 ϕ
λd = 2z = 2πr0

cos ϕ
.

For channeling in the Si(110) direction, the Burgers vector
b = 3.84 Å. Table 2 gives the range of various parameters
of the periodically bent channel affected by dislocations
corresponding to a dislocation density of 108 cm−2.

Figures 2 and 3 show the variation of the amplitude of
bending of the channel and the radius of curvature of the
dislocation affected region respectively. From figure 2, it
is found that the amplitude is no longer constant but varies
periodically with respect to the depth. Figure 3 shows that
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Figure 3. The change in radius of curvature of the dislocation
affected channel with respect to amplitude of bending and depth.
Here we find that the larger the value of a, the larger is the variation
of ρ̃0 with z.

the larger the value of a, the larger is the variation of ρ̃0 with
z. We consider the low dislocation density case of 108 cm−2.
The radius Rd of the dislocation affected region is taken as
10.28 × 107 nm and λd as 6.28 × 103 nm. It is interesting
to note that the larger the variation of a with the length of
the dislocation affected region, the smaller the effective radius
of curvature. This is due to the fact that when ρ0 follows
the curvature to λu to become ρ̃0 the effective radius of the
curved region is reduced because of the larger curvature of the
undulator curve.

We consider the phase difference,  = 0 and n = 2 for
the sake of simplicity of calculation. The potential equation
can be written as

U(ρ) = V0(ρ − ρ̃0)
2. (15)

The effective potential after including the centrifugal force
term can be written as

Veff = V0(ρ − ρ̃0)
2 + h̄2

2m

μ2

ρ2
. (16)

Let
ξ = ρ − ρ̃0. (17)

Simplifying and solving, we get the effective potential as

Veff(ξ) = h̄2

2m

[
λ

ρ̃0
4
(ξ − ã p)

2 + Umin

]
(18)

where
λ = 3μ2 + b4ρ̃0

4 (19)

ã p = ρ̃0μ
2

λ
(20)

Umin = μ2

λρ̃0
2 (λ − μ2) (21)

b =
(

mω

h̄

)1/2

. (22)

The above equations show that the shape of the potential
changes due to the effects of dislocations as before [32]. The
minima of the potential gets shifted due to these effects of

dislocation in the channel and it is dependent on the undulator
parameters as well.

The frequency of oscillation in region II is obtained as

ω′ =
(

h̄

m

)√
λ

ρ̃0
4
. (23)

Consider region III, i.e. the second curved part of the
dislocation affected channel. The centrifugal force is acting in
the opposite direction to that in the first curved region. Solving
this part of the distorted region as in region II, we get the
effective potential as

Veff(ξ) = h̄2

2m

[
λ′

ρ̃0
4
(ξ + ã′

p)
2 + U ′

min

]
(24)

where
λ′ = −3μ2 + b4ρ̃0

4 (25)

ã′
p = ρ̃0μ

2

λ′ (26)

U ′
min = − μ2

λ′ρ̃0
2
(λ′ + μ2). (27)

The minimum of the potential is shifted in the opposite
direction to that in region II and is dependent on the undulator
parameters. The frequency of oscillation in region III is
obtained as

ω′′ =
(

h̄

m

)√
λ′

ρ̃0
4
. (28)

Region IV is again dislocation free and like any other
channel which is periodically bent. It has only transmitted
wave and the wavefunction is similar to that in region I.

We have four regions and the wavefunctions correspond-
ing to these regions are written as [32]

� I(x, z) = A0 X I
0eik0 z +

∑
n=0

Bn X I
ne−ikn z (29)

� II(ρ, ϕ) =
∑
m=0

RII
m[Cmeiμϕ + Dme−iμϕ ] (30)

� III(ρ, ϕ) =
∑
m=0

RIII
m [Gmeiμϕ + Hme−iμϕ ] (31)

� IV(x, z) = X IV
n Ineikn z. (32)

To find the reflection and transmission coefficients, we use
the boundary conditions across the three boundaries and these
are obtained as

|R|2 = (−μ2 + k2ρ̃0
2
)2 sin2(2μϕ0)

4k2μ2ρ̃0
2 cos2(2μϕ0) + (μ2 + k2ρ̃0

2
)2 sin2(2μϕ0)

(33)

|T |2 = 4k2μ2ρ̃0
2

4k2μ2ρ̃0
2 cos2(2μϕ0) + (μ2 + k2ρ̃0

2
)2 sin2(2μϕ0)

.

(34)
The above equations (33) and (34) are the dechanneling and
channeling coefficients respectively. Comparing with the
usual dislocation affected channel we find that a dislocation
in a periodically bent crystal changes the channeling and

4



J. Phys.: Condens. Matter 21 (2009) 245402 J George et al

Figure 4. The change in the dechanneling probability with incident
energy.

Figure 5. The change in the channeling probability with incident
energy.

dechanneling coefficients by the parameters of the crystalline
undulator.

For a dislocation density of 108 cm−2, the value of ρ0 =
10.28 × 107 cm. The variation of the dechanneling and
channeling probabilities corresponding to this fixed value of
radius of curvature is the same as that of any normal channel
affected by dislocations. Figures 4 and 5 show the variation
of these probability values with incident energy. It is found
that transmission of particles is maximum for incident energies
close to 140 MeV. Consequently, we choose an incident energy
of 150 MeV to demonstrate the variation of the channeling
probability with the amplitude of bending and depth as seen
in figure 6. This variation directly follows the variation of the
modulated radius of curvature ρ̃0 with these parameters.

Now we proceed to find the spectral distribution of
radiation intensity. The probability of transition from an initial
state i to the final state f per unit time is determined by the well
known formula

Wfi = 4π2e2

h̄V

∑
�q

|�q|−1|�αfi · �ek |2δ(ωfi − ω) (35)

where V is the volume of the system, and �q and �ek are
the wavevector and polarization vector of a quantum of
electromagnetic field.

h̄ωfi = Eni − Enf. (36)

The matrix elements �αfi are given by

�αfi = δσizσfz δpiy,pfy+h̄qy
�Dfi (37)

Figure 6. The change in channeling probability with z and the
amplitude of bending a.

�Dfi = −ixfi(�fi, 0, qxβ) (38)

�fi = ω

1 − β cos θ
(39)

xfi =
∫ −∞

∞
x Snf Ef(x)Sni Ei(x) dx (40)

where SnE are oscillatory wavefunctions which obey the
Schrödinger equation given by

[
− h̄2

2E

d2

dx2
+ U(x)

]
SE (x) = E SE (x). (41)

Let us define a vector of polarization �e1 in the plane having
the wavevector �q and the z-axis and a vector �e2 ⊥ �e1 in the
plane having the axes x and y. If ϕ and θ are the azimuthal and
polar angles of the wavevector �q,

�e1 = (cos θ cos ϕ, cos θ sin ϕ,− sin θ) (42)

�e2 = (− sin ϕ, cos ϕ, 0). (43)

The summation in equation (35) is written in the integral form
as

Wfi = e2

2π h̄

∫
(|�αfi · �e1|2 +|�αfi · �e2|2)|�q|−1δ(ωfi −ω) d�q. (44)

Solving this we get the transition probabilities as

dWfi

d�
= e2x2

fi�
3
fi

2π h̄(1 − β cos θ)4
[(1 − β cos θ)2

− (1 − β2) sin2 θ cos2 ϕ] (45)

dWfi

dω
= x2

fi�
2
fi

e2

h̄

[
1 − 2

ω

ωm
+

(
ω

ωm

)2]
(46)

dIfi

d�
= e2x2

fi�
4
fi

2π(1 − β cos θ)5
[(1 − β cos θ)2

− (1 − β2) sin2 θ cos2 ϕ] (47)

dIfi

dω
= 3I (0)

fi

[
1 − 2

ω

ωm
+ 2

(
ω

ωm

)2]
(48)

where
ωm ≈ 2γ 2�fi (49)

I (0)
fi = 4

3 e2�4
fiγ

4x2
fi. (50)

5
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Unlike in the other dislocation problems, the value of
�fi changes periodically since the shifted equilibrium axis is
periodically bent. Also, the frequencies of oscillation in both
the dislocation affected regions are not constant. Figure 4
shows the combined change in the spectral distribution of
radiation intensity due to the periodicity of the channel and
dislocation in comparison with the straight channel where s =
4e2�4

fiγ
4x2

fi. We find a considerable amount of change mostly
due to the change in the frequency of oscillation.

2.2. High dislocation density (λd < λu)

Now consider a case where the dislocation affected region is
a (small) part of one undulator wavelength. Such a situation
arises when the dislocation density is high. In this case, the
periodicity of the crystalline undulator is affected in just a few
regions of the undulator wavelength. Just like in the case of the
straight channel, where a part of the channel is shifted due to
the dislocation, here a region of the periodically bent channel
is shifted.

Equation (2) can be written as

x̃ = x − a sin(kuvt) (51)

which gives
¨̃x = ẍ + ak2

uv
2 sin(kuvt) (52)

keeping
1

R
= ak2

u sin(kuvt) (53)

we get

¨̃x = ẍ + v2

R
. (54)

Rewriting equation (52), we get

γ m ¨̃x = ṗ + γ m
v2

R
(55)

where

ṗ = −∂ H

∂ x̃
(56)

where H is given by

H =
√

c2 p2 + m2c4 + qeU(x̃); (57)

solving the above equation, we get

∂ H

∂ x̃
= qe

∂U(x̃)

∂ x̃
. (58)

Hence equation (55) can be written as

¨̃x + qe

mγ
U(x̃) − v2

R
x̃ = 0. (59)

Integrating from x̃ to x̃m and solving, we get the maximum
amplitude of oscillation of the particle as

x̃m = mγ v2

qeV0 R
(60)

Table 3. The various parameters of the undulator and dislocation
affected regions at high dislocation density, when λu = 2λd.

Dislocation
density
(cm−2) λd (nm) λu (nm) a (nm) Ru (nm) E (MeV)

1.5 × 109 1.66 × 103 3.32 × 103 1 2.8 × 105 150
10 2.8 × 104 15

100 2.8 × 103 1.5

and the new equilibrium axis is shifted to

x̃0 = mγ v2

2qeV0 R
. (61)

In this case, since λd < λu, the dislocation affected region
is just a part of the undulator wavelength. Hence we can
consider the region affected as almost like a straight channel.
The slight periodicity of the region is reflected in the sine
terms of xm and x0. The period of oscillation of the particle
in the channel can be found in the same way as in a straight
channel [6].

Solving equation (59), we get

dt = dx̃[
2v2

R x̃ − 2qe
mγ

U(x̃)
]1/2

. (62)

Solving the above equation, we get the period of oscillation as

T =
(

mγ

2qeV0

)1/2

sin−1

{
1 − 2qeV0 R

mγ v2
cos(kuz)

}
. (63)

Table 3 shows the values of the various parameters of the
channel affected with dislocation. In this case, the dislocation
density is high in comparison with the previous case for a
similar range of E and its value is found to be close to
1.5 × 109 cm−2.

3. Results and discussion

It is clear from the calculations that the curvature of the
channel due to dislocation shifts the potential minima even
for a periodically bent channel. This results in the change of
the frequency of oscillations in different regions of dislocation
affected channel. In the case of periodic bending the shift in
potential minima and the frequency of oscillations depends on
the undulator parameters which is varying with the length of
the undulator. That means the shift is not a constant throughout
the undulator but varies periodically with the length.

We first considered a case of low dislocation density with
λd = 2λu. The frequency of channeling radiation as well
as the undulator radiation are affected by the dislocations as
expected. Figures 2 and 3 show the change in the amplitude of
oscillation and radius of curvature of the dislocation affected
regions respectively. The periodic variation of the amplitude
is modulated by dislocation affected curvatures of the two
regions. We chose a dislocation density in the lower regime
of 108 cm−2 to get the corresponding radius of curvature of the
dislocation affected region as 10.28 × 107 nm. The incident

6
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Figure 7. The change in the spectral distribution of radiation intensity due to the periodicity of the channel. s = 4e2�4
fiγ

4x2
fi .

energy is found to be around 142 MeV to get most of the
particles channeled. The amplitude of bending is modulated
by the curvatures of the dislocation affected regions of the
channel. It is found that this amplitude of bending is no
longer a constant, but varies periodically with the amplitude
and wavelength of the dislocation affected region. Also, the
radius of curvature of the dislocation affected region changes
with the amplitude of bending and wavelength of the undulator.
The larger the value of the amplitude of bending, the larger
the variation of the radius of curvature with the length of the
undulator.

The reflection and transmission coefficients calculated
from the boundary conditions correspond to the values
of dechanneling and channeling coefficients respectively.
These are dependent on the undulator parameters via their
dependence on ρ̃0 as seen in equations (33) and (34).
Figures 4–6 show the variation of these probability values with
incident energy and with the depth and amplitude of bending
of the channel. It is noted from figure 6 that the variation of
the channeling probability follows the variation in the curved
regions modulated one over the other.

The spectral distribution of radiation intensity is calculated
and plotted in figure 7. We find a considerable amount of
change in the spectral distribution of radiation intensity. It is
to be noted that the change in radiation parameters is mainly
due to the periodic bending of the channel; i.e., the crystalline
undulator plays a major role in the case of low dislocation
density.

For the sake of completeness and comparison, we consider
the case of λd < λu corresponding to high dislocation
density. All possible ranges of values for both the undulator
and dislocation wavelengths are discussed in detail and
corresponding channeling parameters are calculated. The
period of oscillation of the particle in the dislocation affected
region for high values of dislocation density is found. It
is observed from the calculations that in this case of high
dislocation density the change in various parameters of
channeling in the dislocation affected region is least affected
by undulator parameters.

4. Conclusions

We have developed a quantum mechanical model for the effects
of dislocations on positron channeling along a periodically

bent channel. The shift in potential minima due to the
dislocation in the channel is found for the low dislocation
density case of λd > λu. The channeling and dechanneling
coefficients are found from the boundary conditions across the
three boundaries in the channel which separate the dislocation
affected regions and are found to vary with the changes
in the amplitude of bending of the channel. The spectral
distribution of radiation intensity is found and compared with
that for channeling in a straight channel. The results for all
possible ranges of values of both the dislocation and undulator
wavelengths are compared and corresponding channeling
parameters are calculated. The period of oscillation of the
particle in the channel is found for the high dislocation density
case of λd < λu. It is seen from the entire calculations that
for low dislocation density the crystalline undulator parameters
play a major role, whereas in the case of high dislocation
density the undulator parameters have minimal effects on the
radiation. Since no crystal is perfect and study of crystalline
undulators is incomplete without the consideration of defects
like dislocations, the present study is crucial for investigations
related to crystalline undulators.
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[15] Solov’yov A V, Schäfer A and Greiner W 1996 Phys. Rev. E

53 1129
[16] Korol A V, Solov’yov A V and Greiner W 1998 J. Phys. G:

Nucl. Part. Phys. 24 L45
[17] Korol A V, Solov’yov A V and Greiner W 1999 Int. J. Mod.

Phys. E 8 49
[18] Korol A V, Solov’yov A V and Greiner W 2000 Int. J. Mod.

Phys. E 9 77
[19] Krause W, Korol A V, Solov’yov A V and Greiner W 2000

J. Phys. G: Nucl. Part. Phys. 26 L87
[20] Korol A V, Solov’yov A V and Greiner W 2001 J. Phys. G:

Nucl. Part. Phys. 27 95

[21] Korol A V, Solov’yov A V and Greiner W 2004 Int. J. Mod.
Phys. E 13 867

[22] Mikkelsen U and Uggerhhoj E 2000 Nucl. Instrum. Methods B
160 435

[23] Krause W, Korol A V, Solov’yov A V and Greiner W 2002
Nucl. Instrum. Methods A 483 455

[24] Avakian R O, Avetian K, Ispirian K A and Melikian E G 2003
Nucl. Instrum. Methods A 508 496

[25] Avakian R O, Avetian K, Ispirian K A and Melikian E G 2002
Nucl. Instrum. Methods A 492 11

[26] Bellucci S et al 2003 Phys. Rev. Lett. 90 34801
[27] Guidi V, Antonini A, Baricordi S, Logallo F, Malagu C,

Milan E, Razoni A, Stefancich M, Martinelli G and
Vomiero A 2005 Nucl. Instrum. Methods B 234 40

[28] Guidi V, Lanzoni L, Mazzolari A, Martinelli G and
Tralli A 2007 Appl. Phys. Lett. 90 114107

[29] Lanzoni L, Mazzolari A, Guidi V, Tralli A and
Martinelli G 2008 Int. J. Eng. Sci. 46 917–28

[30] Kostyuk A, Korol A V, Solov’yov A V and Greiner W 2008
Nucl. Instrum. Methods A 266 972–87

[31] Tabrizi M, Korol A V, Solov’yov A V and Greiner W 2007
Phys. Rev. Lett. 98 164801

Tabrizi M, Korol A V, Solov’yov A V and Greiner W 2007
J. Phys. G: Nucl. Part. Phys. 34 1581

[32] George J, Pathak A P, Cruz S and Emfietzoglou D 2007 Nucl.
Instrum. Methods B 256 148

8

http://dx.doi.org/10.1103/PhysRevB.15.3309
http://dx.doi.org/10.1088/0953-8984/9/8/004
http://dx.doi.org/10.1103/PhysRevB.58.5243
http://dx.doi.org/10.1103/PhysRevB.59.8516
http://dx.doi.org/10.1088/0022-3719/8/21/005
http://dx.doi.org/10.1080/00337578208225733
http://dx.doi.org/10.1080/00337578208222843
http://dx.doi.org/10.1080/00337578808225708
http://dx.doi.org/10.1016/0370-1573(82)90047-3
http://dx.doi.org/10.1002/pssb.19680300231
http://dx.doi.org/10.1103/PhysRevB.30.1567
http://dx.doi.org/10.1002/pssb.2221840227
http://dx.doi.org/10.1103/PhysRevE.53.1129
http://dx.doi.org/10.1088/0954-3899/24/5/001
http://dx.doi.org/10.1142/S0218301399000069
http://dx.doi.org/10.1088/0954-3899/26/6/103
http://dx.doi.org/10.1088/0954-3899/27/1/307
http://dx.doi.org/10.1142/S0218301304002557
http://dx.doi.org/10.1016/S0168-583X(99)00637-0
http://dx.doi.org/10.1016/S0168-9002(02)00361-3
http://dx.doi.org/10.1016/S0168-9002(03)01656-5
http://dx.doi.org/10.1016/S0168-9002(02)01316-5
http://dx.doi.org/10.1103/PhysRevLett.90.034801
http://dx.doi.org/10.1016/j.nimb.2005.01.008
http://dx.doi.org/10.1063/1.2712510
http://dx.doi.org/10.1016/j.ijengsci.2008.03.011
http://dx.doi.org/10.1016/j.nimb.2007.12.107
http://dx.doi.org/10.1103/PhysRevLett.98.164801
http://dx.doi.org/10.1088/0954-3899/34/7/001
http://dx.doi.org/10.1016/j.nimb.2006.11.126

	1. Introduction
	2. Effects of dislocations on channeling in a periodically bent crystal
	2.1. Low dislocation density (λd >λu) 
	2.2. High dislocation density (λd <λu )

	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References

